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Abstract – Our work models the reception antenna 

used in magnetic resonance in order to improve the quality of 

image. When using MRI, several parameters contribute to 

the image quality. We here want to find the geometrical and 

electromagnetic characteristics of the antennas which permit 

to have a signal to noise ratio as great as possible. In our 

computation, we have taken into account leading factors such 

as the distance between the probe and the organ to be 

explored and also the geometrical and electromagnetic 

characteristics of the probe. A finite element method in the 

volume and a boundary integral method on its surface are 

coupled to model the system.  
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I.  INTRODUCTION 

 

OWADAYS, a magnetic resonance imaging is a 

very interesting exploration tool. Its utility on a patient is 

such as it gives a spectacular development since many 

years. However, detection by nuclear magnetic resonance 

poses a critical problem of sensitivity because the received 

signal is accompanied by interfering signals and noises of 

various origins. The interaction between the reception 

antenna and the human body utilizes several parameters 

which have a direct relationship with the quality of the 

image, namely the intrinsic parameters of the molecular 

structure of human tissue (,,,T1,T2,..). And so the 

scientist bases his calculations for the design of the 

antennas  

  

II. THE PHYSICAL MODEL 
 

The physical system is made of the organ to 

explore and of the antenna closed enough to the body 

surface. The whole is in a MRI environment: a static 

magnetic field (B0), a system giving field gradients on the 

three directions of space 3D and a magnetic radio 

frequency field (B1). The useful signal which is used to 

obtain the image comes from the induced body 

magnetization M at the time when this one returns to 

equilibrium with a free precession movement of pulsation 

 and decreasing time T2, as soon as the high frequency 

field is extinguished; it then produces into the antenna an 

HF electromagnetic field (e
s
,h

s
). We study two different 

models of antennas. The first one is composed with 

metallic material, the second one is a thin conducting layer 

impregnated on a dielectric substrate. 
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Both of the antennas are closed enough to the body to 

explore, in order to have a maximum intensity of the 

magnetic flux created by the induced magnetisation of the 

organ.  

The distance between the body and the antenna is 

a determining factor in the design of this one, a very weak 

distance would cause the increase in the intensity of the 

noise which results in two physical phenomenon: the 

capacitive effect and the inductive effect between the body 

and the antenna; a more or less large distance giving a loss 

of the signal. This factor does not directly appear in the 

equation which governs our physical system; it intervenes 

like a variable parameter in the calculation of the field’s 

source. The last is written in the form: 

 𝑒𝑠 , ℎ𝑠 =  𝐸𝑠 , 𝐻𝑠 𝑒− 𝑖𝜔+
1
𝑇2

 𝑡
 

=2пf, where f is frequency of magnetic field (B1)  which 

must be fixed at the resonance frequency of targeted 

nucleus of the body to explore and T2, is a transverse 

relaxation time. 

The system thus defined is governed by Maxwell’s 

equations: 

 

 
𝑐𝑢𝑟𝑙 ℎ −  𝜎−∝ 𝜀 𝑒 = 0     1 
𝑐𝑢𝑟𝑙 𝑒−∝ 𝜇ℎ = 0                (2)

  

 

Where ∝=  𝑖𝜔 + 1
𝑇2
   and µ, ,  are the 

electromagnetic characteristics of the material. 

 

III.  FORMULATION OF THE PROBLEM 

 

We adopt a variational formulation with magnetic and 

electric fields. We consider Ω as the domain of the  

antenna in space R
3
 with conductivity , permeability µ 

and permittivity  ; its surface is  and n is the normal 

vector to . In the first case, where the antenna is a 

metallic domain, the variational formulation is made of a 

volume integral and a surface integral. In second case, 

where antenna is impregnated on a dielectric substrate, it is 

simulated as surface and variational formulation is 

composed of only surface integral.  

    

A. Formulation on Domain of Antenna  : 

 

By respectively multiplying (1) and (2) by test 

functions (e’) and (curl e’) and by integrating on domain Ω 

we obtain: 

 

 𝑐𝑢𝑟𝑙 ℎ. 𝑒 ′ −  𝜎 − 𝜀𝛼  𝑒. 𝑒 ′ = 0                      (3)
ΩΩ

 

 ℎ. 𝑐𝑢𝑟𝑙 𝑒 ′ =
1

𝛼𝜇
 𝑐𝑢𝑟𝑙 𝑒. 𝑐𝑢𝑟𝑙 𝑒′

ΩΩ

                      (4) 

 

The first integral of the first term can be written as: 

N 
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 𝑐𝑢𝑟𝑙 ℎ. 𝑒 ′

Ω

=  ℎ. 𝑐𝑢𝑟𝑙 𝑒′
Ω

+   𝑛 ∧ 𝑒 . ℎ′

Γ

      (5) 

1

𝛼𝜇
 𝑐𝑢𝑟𝑙 𝑒. 𝑐𝑢𝑟𝑙 𝑒 ′

Ω

−  𝜎 − 𝛼𝜀  𝑒. 𝑒 ′

Ω

−  ℎ Λ n . 𝑒 ′ = 0                   (6)
Γ

 

 

Also, by multiplying (1) and (2) by test functions (rot h’) 

and (h’) respectively and integrating on domain Ω we 

obtain:  

 𝑐𝑢𝑟𝑙 ℎ. 𝑐𝑢𝑟𝑙 ℎ′ −  𝜎 − 𝜀𝛼  𝑒. 𝑐𝑢𝑟𝑙 ℎ′ = 0  (7)
ΩΩ

 

 

 ℎ. ℎ′ =
1

𝛼𝜇
 𝑐𝑢𝑟𝑙 𝑒 .  ℎ′
ΩΩ

                                         (8) 

 

 

The last term can also be written:  

 

 𝑐𝑢𝑟𝑙 𝑒. ℎ′
Ω

 =  𝑒. 𝑐𝑢𝑟𝑙 ℎ′
Ω

 -  𝑛 ∧ 𝑒 . ℎ′
Γ

                (9) 

 

And finally we obtain: 

1

(𝜎 − 𝛼𝜀)
 𝑐𝑢𝑟𝑙 ℎ. 𝑐𝑢𝑟𝑙 ℎ′  − 𝜇 𝛼  ℎ. ℎ ′

Ω
Ω

 

                                   −   𝑒 Λ n . ℎ′ = 0             (10)
Γ

 

 

B. Formulation of the Boundary Term: 

 

Our problem is defined in all space R
3
, the exterior 

problem (air) is considered by a formulation of boundary 

integral. We can write the tangential component of 

electromagnetic field by integral representation where the 

potential define the jump of the electromagnetic field. 

The Stratton–Chu formulae [4] give an integral 

representation of the electromagnetic fields. Outside Ω, for 

𝑥 ∉ Γ, we have: 

𝑒 𝑥 = −
1

ε0α
 gradΓ   𝐺(𝑥, 𝑦) 𝑑𝑖𝑣 𝑛 Λ ℎ(𝑦) 

Γ

 

where, 𝐺 𝑥, 𝑦 = 𝑒−𝑖𝑘 𝑥−𝑦 /4𝜋 𝑥 − 𝑦  is the Green 

function in the air for the Helmoltz equation and k is the 

wave number. 

By taking into account that: 

lim
𝑥→𝑥0

𝑛 𝑥0 Λcurl G x, y u(y)
Γ

 =   

𝑢0 𝑥 

2
+ 𝑛 𝑥0 Λ 𝑔𝑟𝑎𝑑𝑥

Γ

𝐺 𝑥0 , 𝑦 Λ𝑢 𝑦  

we obtain the tangential trace of the electromagnetic fields 

h and e on the external face of   

 
𝑛 Λ h(x)

2
= 𝑛 Λ ℎ𝑠  𝑥 

+
1

μ0α
𝑛 Λ gradΓ   𝐺(𝑥, 𝑦) 𝑑𝑖𝑣 𝑛 Λ 𝑒(𝑦) 

Γ

 

−𝛼𝜀0  𝑛 Λ  G(x, y)(n Λ
Γ

 e(y) 

+  n Λ gradx  G x, y Λ nΛh y                                   (13)  
Γ

 

   
𝑛 Λ e x 

2
= 𝑛 Λ 𝑒𝑠(𝑥)        

+
1

ε0α
𝑛 Λ gradΓ   𝐺(𝑥, 𝑦 𝑑𝑖𝑣 𝑛 Λ ℎ(𝑦) 

Γ

 

−𝛼𝜇0𝑛 Λ  G(x, y)(n Λ
Γ

h y 

+  n Λ gradx G x, y Λ nΛe y                                    (14)  
Γ

 

 

C. Variational Formulation of Boundary Term: 

       

By multiplying (13) by a tangential test field (e’) 

defines in the same functional space of electric field and 

by integrating on , we obtain: 

 

  𝑛 Λ h x  e′ x =
Γ

2  𝑛 Λ ℎ𝑠 𝑥  𝑒 ′(𝑥)
Γ

+  2𝛼𝜀0   G(x, y) nΛe(x) 
Γ

(n Λ
Γ

 e′(x))    

− 2  grad G(x, y)
Γ

Λ nΛh x  . (nΛe  
′ (x))     (15)

Γ

+
2

μ0α
   𝐺(𝑥, 𝑦) 𝑑𝑖𝑣(𝑛Λe(x)

Γ

. 𝑑𝑖𝑣 𝑛 Λ e′(x) 
Γ

 

                               +𝛼𝜇0  G(x, y)(n Λ
Γ

h y        

+  curl G x, y (nΛe(y))              (11)  
Γ

 

ℎ 𝑥 =
1

μ0α
 gradΓ  𝐺 𝑥, 𝑦 𝑑𝑖𝑣 𝑛 Λ 𝑒 𝑦  

Γ

− 𝛼𝜀0  G(x, y)(n Λ
Γ

 e(y))

+ curl G x, y Λ nΛh y              (12)
Γ

 

 

 

In the same way, we multiply (14) by tangential 

test field (h’) defined in the same functional space of 

magnetic field and integrate on  and then we obtain: 

 

  𝑛 Λ e x  h′ x =
Γ

 2  𝑛 Λ 𝑒𝑠 𝑥  ℎ′ 𝑥     
Γ

            

−
2

ε0α
   𝐺(𝑥, 𝑦) 𝑑𝑖𝑣(𝑛Λℎ(𝑥))

Γ

. 𝑑𝑖𝑣 𝑛 Λ h′(x) 
Γ

 

 −2𝛼𝜇0   G(x, y) nΛ h(x) 
Γ

(n Λ
Γ

 h′(x))                                

         −2  gradx G
Γ

 x, y Λ nΛe x  .  nΛh  
′  x      (16)  

Γ
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Finally, by replacing the boundary terms (15), 

(16) by their expressions on (6) and (10), we obtain the 

global variational formulation with the two 

electromagnetic fields (e,h): 

 

1

𝛼𝜇
 𝑐𝑢𝑟𝑙 𝑒. 𝑐𝑢𝑟𝑙 𝑒 ′ −  𝜎 − 𝛼𝜀  𝑒. 𝑒 ′

ΩΩ

 

+
2

μ0α
   𝐺(𝑥, 𝑦) 𝑑𝑖𝑣(𝑛Λe(x)

Γ

. 𝑑𝑖𝑣 𝑛 Λ e′(x) 
Γ

 

+2𝛼𝜀0   G(x, y) nΛe(x) 
Γ

(n Λ
Γ

 e′(x)) 

−2  grad G x, y 
Γ

Λ nΛh x  .  nΛe  
′  x  

  
Γ

 

      

= −2  𝑛 Λ ℎ𝑠 𝑥  𝑒 ′ 𝑥                                             (17)
Γ

 

1

(𝜎 − 𝛼𝜀)
 𝑐𝑢𝑟𝑙 ℎ. 𝑐𝑢𝑟𝑙 ℎ′ − 𝜇 ∝  ℎ. ℎ′

ΩΩ

 

−
2

ε0α
   𝐺(𝑥, 𝑦) 𝑑𝑖𝑣(𝑛Λℎ(𝑥))

Γ

. 𝑑𝑖𝑣 𝑛 Λ h′(x) 
Γ

− 2𝛼𝜇0   G(x, y) nΛ h(x) 
Γ

(n Λ
Γ

 h′(x)) 

−2  gradx G
Γ

(x, y)Λ nΛe x  . (nΛh  
′ (x))  

Γ

           

= −2  𝑛 Λ 𝑒𝑠 𝑥  ℎ′ 𝑥                                                   (18)   
Γ

 

 

IV. COMPUTATION OF THE SOURCE FIELDS 

 

The works which was realized by [2]-[7] on the same 

antenna model aims to find resonance frequency of this 

one as a function of its geometrical characteristics. But our 

work aims to find a configuration of the system defined 

above which gives a signal to noise ratio as great as 

possible. We have used a real physical data of an MRI 

sequence, such: a static magnetic field B0=1.5T, a radio 

frequency magnetic field 𝐵1 =  𝐵01 𝑒 –𝑖𝜔0𝑡 ,  where 𝜔0is 

defined in [6]. 

The median magnetization of body: 

 𝑀 = 𝑀0𝑒
–𝑖𝜔0𝑡 = 𝑀𝑧 𝑇1 cos⁡(𝜃) + 𝑀𝑥𝑦 (𝑇2)sin⁡(𝜃), 

𝜃 = 𝛾𝐵01𝜏.  

 is the application time of B1 

B01 is the amplitude of field B1  

The tangential component  𝑀𝑥𝑦   represents the source field 

of the image signal. Then, we can write our source field 

under form: 

 
 
 

 
 𝑒𝑠 𝑥, 𝑡 =

𝜇0𝛼

4𝜋
 

𝑀 ∧ 𝑛

𝑟Γ_body

ℎ𝑠 𝑠, 𝑡 =
1

4𝜋
 

(𝑀 ∧ 𝑛) ∧ 𝑟

𝑟3
Γ_body

  

 

and M is defined by:  

 

𝑀 
𝑀𝑥

𝑀𝑦

𝑀𝑧

 ;  

𝑀𝑥 = 𝑀0 cos⁡(𝜃)sin⁡(𝜑)
𝑀𝑦 = 𝑀0cos⁡(𝜃)cos⁡(𝜑)

𝑀𝑧 = 0

  

 

where 𝜑 = 𝛼 ∗
𝐼𝑇𝑃

𝑇2
; 𝐼𝑇𝑃 = 1,𝑁𝑆𝑇𝐸𝑃 

NSTEP is the number of iterations in time domain. 

 

V- NUMERICAL RESOLUTION 

 

To solve the variational problem defined by both 

of the equations (17) and (18), we adopt the finite element 

method, where we took the circulation of the fields E and 

H along the edges of the grid as the unknowns of the 

problem. 

When the antenna is a metallic layer impregnated 

on a dielectric substrate, it is considered as a set of triangle 

on  of conductivity c multiplied by the thickness of the 

layer. 

For the discretization we used Whitney elements [5]. Each 

of the two fields e and h is written in the form according to 

the following form: 

𝑢 =  𝑈𝑖𝑗

𝑁𝐵𝐸

𝐼𝐸=1

𝑤𝑖𝑗  

where: 

NBE: is the number of the edges 

 IE: describes the edges of the elements of the grid 

Uij: is the circulation of the field on the edge of           

top ij 

𝑤𝑖𝑗 = 𝜆𝑖∇𝜆𝑗 − 𝜆𝑗∇𝜆𝑖  

𝜆𝑖 : barycentric coordinate of the element of the grid 

We replace each of the fields (e,h) by their discrete form 

  

ℎ =  ℎ𝑖𝑗

𝑁𝐵𝐸

𝐼𝐸=1

𝑤𝑖𝑗       ,           𝑒 =  𝑒𝑖𝑗

𝑁𝐵𝐸

𝐼𝐸=1

𝑤𝑖𝑗  

 

The global variational formulation is written in 

the following matrix form: 

𝐴. 𝐹 = 𝐵 

where A is a square matrix, constituted with the 

geometrical characteristics of the grid and the 

electromagnetic characteristics of the materials  

F =(h,e) is the unknowns vector and B is the sources 

vector. 

 

VI. NUMERICAL RESULTS 

 

We used only two models of antennas with different 

geometrical forms. We simulated the body with a sphere 

with a median induced magnetization M0. By varying the 

distance between the antenna and the sphere, we traced the 

arrows of the electromagnetic field solution of the 

problem.  

Figures bellow show the structures of grid used: 
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Fig. 1. Antenna-Body grid 

 
Fig. 2. Torus antenna grid 

 
Fig. 3.  Metallic layer on dielectric substrate (circular form) 

The following figures show the distribution of the signal 

induced by a transverse magnetization M of the body. 

 

 
Fig. 4. Arrows of electrical field on Torus 

 
Fig. 5. Distribution of the signal induced in impregnated antenna 

VI- CONCLUSION 
        

In this paper, we present preliminary numerical 

results of our computation code. From these results, we 

deduce that the intensity of the electromagnetic flux 

created by the induced magnetization of the organ and 

embraced by the surface antenna is very sensible to 

variation of the distance between the antenna and the body 

to explore, and to their geometrical forms. Thus, we 

remark that for a spherical form of the body to explore the 

torus antenna is more adopted than a square form of the 

antenna. 

From ten to one hundred Mhz, [the bandwidth of 

resonance frequency of biological tissue] the induced 

signal is globally supported by the surface  of the antenna 

that is why a Stratton-Chu integral formula is adopted in 

our computation. 

The induced signal is characterized by a very low 

intensity and a very fast attenuation.  This requires a 

particular numerical processing. The `pseudo-period' of 

Mxy is T=2 / γB0 = 3.10 
-7 

second for protons subjected 

to a field of 0.5 Tesla. Our work represents a new 

approach in this field. 

Our computation code doesn’t converge when the 

distance between the antenna and the organ is less than 

0.01cm for antenna about 5 cm of median radius. 

By taken away the antenna from the organ, we loose in the 

signal intensity but we gain CPU time and the 

convergence of the computation code. 

In our computation, we don’t take into account 

physical phenomena, such us, inductive and capacitive 

effects between antenna and the organ. These effects 

accentuate when the distance is towards zero. These 

effects essentially contribute in the identification of noise 

and can be quantify by experimental measurements.          
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